
Judgment of paradigms for magnetic reconnection in coronal loops

Allen H Boozer
Columbia University, New York, NY 10027

ahb17@columbia.edu
(Dated: October 6, 2022)

The traditional paradigm for magnetic field lines changing connections ignores magnetic field line
chaos and requires an extremely large current density, jmax ∝ Rm, flowing in thin sheets of thickness
1/Rm, where Rm is the magnetic Reynolds number. The time required for a general natural evolution
to take a smooth magnetic field into such a state is rarely considered. Natural evolutions generally
cause magnetic field lines to become chaotic. A fast change in field line connections then arises on
the timescale defined by the evolution multiplied by a ln(Rm) factor, and the required maximum
current density scales as ln(Rm). Even when simulations support the new paradigm based on chaos,
they have been interpreted as supporting the old. How this could happen is an important example
for plasma physics of Kuhn’s statements about the acceptance of paradigm change and on Popper’s
views on the judgment of truth in science.

In 1962, Thomas Kuhn wrote [1] what the En-
cyclopaedia Britannica described as one of the most
influential works of history and philosophy written in
the 20th century [2]. He discussed the importance of
paradigms in science and how difficult it is for a sci-
entific community to accept a change in paradigm.
The physics of changes in the connections of mag-
netic field lines illustrates Kuhn’s point in a problem
of great importance in both natural and laboratory
plasmas.

The traditional paradigm for changes in field line
connections was clearly stated by Schindler, Hesse,
and Birn in their paper on general magnetic recon-
nection [3]. To obtain changes in field line connec-
tions at a rate consistent with plasmas with large
magnetic Reynolds numbers, Rm ∼ 108 to 1020, an
intense current density, jmax ∝ Rm must arise in
sheets of thickness ∝ 1/Rm. Hundreds of papers
have been written on ways such an extreme current
density can be maintained if it were initially present,
but the way an arbitrary magnetic field could evolve
into such a state is rarely considered.

Papers by a number authors emphasize that
chaotic magnetic-field-line trajectories fundamen-
tally change the paradigm of magnetic reconnection
from that of Schindler et al. Chaos enters the the-
ory of turbulent magnetic reconnection, and this
topic was reviewed [4] by Lazarian, Eyink, Jafari,
Kowal, Li, Xu, and Vishniac in 2020. Eric Priest
has been associated with a large body of work on
three-dimensional structures that tend to concen-
trate currents and thereby lead to enhanced recon-
nection [5]. In particular, he is known for his work
on quasi-separatrix layers, which are essentially re-
gions of field line chaos. Reid, Parnell, Hood, and
Browning [6], have simulated a case in which the
footpoint motions of magnetic field lines do not di-
rectly make the lines chaotic but drive large-scale
instabilities that do.

FIG. 1: A perfectly conducting cylinder of height L and
radius a encloses an ideal pressureless plasma. All of
the sides of the cylinder are fixed except the top, which
flows with a specified velocity ~vt. Initially, ~B = B0ẑ.
Each point ~xb on the bottom of the cylinder defines a
line of ~B that in an ideal evolution intercepts a specific
point on the top ~xt with ∂~xt(~x0, t)/∂t = ~vt(~xt, t) and
~x0 ≡ ~xt at t = 0. The case of primary interest is when
~vt is divergence free and chaotic. This means the 2 × 2
Jacobian matrix ∂~xt/∂~x0 has a large singular value that
increases exponentially in time and a small singular value
that is the inverse of the large singular value.

Allen Boozer has published a number of articles
on the fundamental importance of chaos to magnetic
reconnection and that show that the magnetic fields
must have a non-trivial dependence on all three spa-
tial dimensions for chaos to be important. Two re-
cent articles are [7, 8]. He and Todd Elder also pub-
lished [9] a simple example, Figure 1, of corona-like
footpoint motions directly driving magnetic field line
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chaos. The changing of field line connections is rig-
orously defined in this model. It is shown that going
from spatially-constant straight magnetic field lines
to a state in which a change in field line connections
is unavoidable requires a time that is the ideal evo-
lution time multiplied by ln(Rm) and the maximum
current density need be only proportional to ln(Rm).
They found the currents lie in extremely contorted
ribbons along the magnetic field lines, have a width
proportional to Rm, and a thickness proportional to
1/Rm.

It should be emphasized that here and in mathe-
matics, chaotic trajectories do not mean random but
that neighboring trajectories separate exponentially.
See the caption to Figure 1.

The central conclusions of the work by Boozer can
be summarized in two sentences: Assume magnetic
field line connections are well defined and non-ideal
effects on the magnetic evolution are small. Then,
magnetic field lines go from a simple smooth form
to having large and broadly-spread changes in their
connections on a timescale that is approximately a
factor of ten longer than the ideal evolution time
when and only when the magnetic field lines become
chaotic.

It should be noted that although chaos exponen-
tially enhances the breaking of magnetic field line
connections, chaos can only spread, not destroy, the
helicity injected by footpoint motion. When the rate
of helicity injection is greater than the large-scale
resistive timescale of the plasma, flux-tube eruption
must eventually occur [9]. This result would be false
if helicity could be efficiently destroyed at small spa-
tial scales. Although it has been known starting
in mid-1980’s that this is not energetically possi-
ble [10, 11], destruction of helicity at small scales
is commonly assumed in dynamo theory [12].

Karl Popper is widely acclaimed as one the twen-
tieth century’s most influential philosophers of sci-
ence. He famously stated [13] that a scientific state-
ment can never be proven to be correct but that it
must in principle be testable. The most reliable sci-
entific statements have been tested and never proven
false.

The central conclusions of Boozer’s work on the
changing of field line connections could be proven
false in two ways: (1) Find an evolving highly
chaotic magnetic field that nonetheless preserves
well-defined magnetic field line connections. (2)
Find an evolving non-chaotic magnetic field that
nonetheless goes from being simple and smooth to
large scale connection breaking on a timescale only
an order of magnitude longer than the ideal evolu-
tion time, even when Rm is of order 108 or larger.

The changing of magnetic field line connections
on a timescale approximately an order of magni-

tude longer than the evolution timescale, even as
Rm → ∞, is a common feature of observations
of natural plasmas and of laboratory experiments.
Having an appropriate paradigm for studying such
of phenomena is clearly of major importance to the
entire field of plasma physics.

Th difficulty of accepting a new paradigm is illus-
trated by an August 15, 2022 arXiv posting by Yi-
Min Huang and Amitava Bhattacharjee, Do chaotic
field lines cause fast reconnection in coronal loops?
[14]. They have carried out simulations of essentially
the model of Figure 1 and claim their simulations
give a negative answer to the question in their ti-
tle. Their abstract explicitly lists eight papers by
Boozer over the last decade and no papers by other
authors except that of Boozer and Elder [9]. The
abstract says the Huang-Bhattacharjee simulations
do not support the claims in these papers.

Remarkably, the Huang-Bhattacharjee article
finds that the field lines become chaotic and undergo
large changes in their connections on a timescale ap-
proximately an order of magnitude longer than the
ideal evolution time, independent of the resistivity;
the changing of field line connections had become
extremely fast at a time only 30% later. They did
not mention and certainly gave no evidence for the
existence of a comparison case in which field lines go
from straight to changing connections on a timescale
determined by the ideal evolution while remaining
non-chaotic.

How can results that are seemingly consistent with
a scientific statement be used to refute it? First,
the authors say the changing of field line connec-
tions is not the fundamental definition of reconnec-
tion. In their view, the fundamental definition is
the development of the “signatures of reconnection,”
such as intense current densities jmax ∝ 1/η in thin
sheets with η the resistivity. The development of
such sheets is demonstrated by Figure 2 of their ar-
ticle.

The Huang-Bhattacharjee “signatures of recon-
nection” arise on a timescale only an order of mag-
nitude longer than the ideal evolution timescale, so
even using them as the definition of reconnection
does not invalidate the two sentences of central con-
clusions. The thin sheets of jmax ∝ 1/η current den-
sities are the primary requirement of the traditional
Schindler et al paradigm for reconnection [3].

The scaling of the maximum current density
as jmax ∝ 1/η in the simulations caused Huang
and Bhattacharjee to assume that the traditional
paradigm remains an essential part of reconnection
theory. But, the jmax ∝ 1/η in their simulations has
another explanation—power balance. The power
put into the plasma by the moving top surface,

~vt · (~j × ~B), can only be balanced by resistive dissi-
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pation, ηj2 integrated over the plasma volume, and
then only when jmax ∝ 1/η. Unlike Schindler et al
reconnection, the chaos enhanced breaking of field
line connections directly dissipates little energy. The
released energy must go into plasma kinetic energy,
which means Alfvén waves. Indeed as the chang-
ing of field line connections proceeds, the Huang-
Bhattacharjee simulations see a rapid increase in the
plasma flows. An implication is that plasma viscos-
ity νv could damp the input power as well as resis-
tivity η. However, in their simulations the Prandtl
number, Pr ≡ νvµ0/η is unity and only ∼ 20% of the
input power is damped by viscosity. When Pr >> 1,
large current densities are neither required to allow
a change in field line connections nor to dissipate the
input power. The velocity of the plasma will become
smoother the larger the viscosity, but the timescale
for the onset of large-scale changes in field line con-
nections should have little dependence on viscosity
when the chaos is directly driven by the boundary
conditions as in the model of Figure 1.

Huang and Bhattacharjee have agreed to do sim-
ulations with a large viscosity to determine whether
sheets of intense currents persist. However, a fun-
damental numerical problem complicates the inter-
pretation of results. Chaotic magnetic field lines by
definition have a separation between infinitesimally
separated pairs of lines that increases exponentially
with distance along the lines. The implication is
that the numerical resolution required to preserve
field line connections increases exponentially as the
streamlines of the flow ~vt exponentiate apart. Any
realizable numerical resolution becomes inadequate
after a time that depends only logarithmically on the
resolution when the resistivity is small. It has been
suggested to Huang and Bhattacharjee that they set
η = 0 in their code and keep only the viscosity νv
and study the results for various values of the fluid
Reynold number, Rf = vtL/νv. Thought is required
on how current densities are calculated when the nu-
merical resolution is inadequate. The numerical res-
olution issue could be solved by making the resistiv-
ity sufficiently large, which would require the mag-
netic Reynolds number Rm be significantly smaller
than than the ratio of the grid scale to the spatial
scale of ~vt. The applicability of results from relative
small values of Rm to physically important values,
Rm ∼ 108 to 1020, requires careful thought.

Essentially all natural flows are chaotic, which is
why a radiator can heat a room in of order 10 min
instead of the weeks expected from thermal diffu-
sion. The explanation is essentially the same for the
rapid spread of the temperature and the rapid spread
of magnetic field line connections [7]. Without dif-
fusion the temperature in a room would evolve as

∂T/∂t + ~v · ~∇T = 0 with ~∇ · ~v = 0. The impli-

cations are that the constant temperature contours
cannot break and that they enclose constant vol-
umes. But, a chaotic flow ~v produces exponentially
increasing distortions in the shape of the constant-T
surfaces, which allow an exponentially small thermal
diffusivity to spread the temperature. The curves
that define tubes of magnetic flux are distorted in
an ideal evolution just as constant-T contours are.
The exponentially increasing distortions allow resis-
tive diffusion η/µ0 to diffuse field lines between the
tubes. Exponentially enhanced diffusion can occur
for a scalar quantity, such as the temperature, in
two dimensions, but three dimensions are required

for the analogous effect for the vector ~B [7].

A large Prandtl number is required not only to
distinguish physics effects but also to be charac-
teristic of space plasmas. The values of Pr given
by Aschwanden [15] are many orders of magnitude
larger than unity. One reason is obvious. The
calculation of the cross-field viscosity in a plasma
closely follows that of the ion thermal conductivity.
Small-scale turbulence that affects any part of the
ion distribution function in velocity space can pro-
duce an enhancement. Even in the relatively quies-
cent conditions of tokamak fusion plasmas, ion ther-
mal diffusivities are of order the gyro-Bohm coeffi-
cient DgB ≈ (ρi/a)DB , where the Bohm coefficient,
DB ≈ T/eB represents the largest microturbulent
transport possible, ρi is the ion gyroradius, and a is
the spatial scale of gradients. Small-scale turbulence
generally has little effect on the parallel resistivity
η||, which allows changes field line connections, be-
cause if any part of the electron velocity space can
efficiently carry the current then it will. Large en-
hancements in η|| are not observed in tokamak plas-
mas.

One of the confusions in the literature is what is
the definition of reconnection: a topology change
in the magnetic field lines or an energy change in
the magnetic field. The two definitions are not
equivalent. Tokamak disruptions are spectacular
changes in field-line topology. Most of the mag-
netic surfaces can be destroyed and the current pro-
file flattened on a timescale of milliseconds, when
the naively expected timescale would be minutes,
but the change in the poloidal field energy is ∼7.5%
with the poloidal field energy only a few percent of
the magnetic field energy in the plasma. Ideal insta-
bilities can release magnetic energy on an Alfvénic
time scale with no change in field line connections.
In the toroidal plasma physics community, the def-
inition of reconnection is a topology change, which
follows Parker and Krook’s 1956 definition [16].

The energy definition of reconnection tends to be
more popular for reconnection in natural plasmas.
A major reason is that energy changes can be lo-
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cally defined and the boundary conditions used for
plasma problems that arise in nature are frequently
too imprecise [17] to make the field line changes well
defined.

Connection changes are topological changes. As is
generally true with topological changes, where along
the line the change took place is not necessarily well
defined, nor is the speed of the change necessar-
ily bounded. What is bounded is the speed with
which physical effects associated with the change
take place.

These statements are easier to understand in the
context of a tokamak disruption in which magnetic
field lines go from lying in nested toroidal surfaces
to chaotically covering the plasma volume. At some
point in time the last magnetic surface breaks and
field lines that were bounded by that surface before
that instant in time change at that time to trajecto-
ries that go to the surrounding walls. Although the
change in connections was in some sense instanta-
neous, the effects have various speeds: j||/B flattens
on a shear Alfvèn wave timescale and the electron
energy spreads either by parallel thermal conduction
or ballistically when the mean free path is long.

If plasma physics topics that are of great soci-
etal importance, such as space weather and mag-
netic fusion energy, are to be successfully addressed,
optimal research paradigms must be developed and
adopted. Karl Popper and Thomas Kuhn have

given clear statements about how paradigms are to
be judged and the difficulties of having improved
paradigms adopted. The Huang-Bhattacharjee Au-
gust 15 arXiv posting [14] offers lessons in this re-
gard because their simulations do not support the
point they claim. For the lessons to be learned, the
community needs access to information about the
divergence between the implications of the results
and the points made by the authors.

The Huang-Bhattacharjee simulations are impor-
tant and should be published. Their simulation ca-
pabilities could greatly enhance the understanding
of reconnection by the use of a physically relevant
viscosity and by studying the eruption of coronal
loops due to helicity accumulation.
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